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The question of the application of a variational principle as the fundamental 
basis for the construction of models of media within the scope of the special 
or general theories of relativity was considered In detail by Sedov [l and 23. 
In the foregoing work variational principles are applied to obtain conditions 
on the surfaces of discontinuity of the characteristics of the medium. Equa- 
tions are thus obtained on dlscontlnultles ln media having Internal degrees 
of freedom, as Is expressed In the presenoe of the strain rate tensors and 
strain gradients among their governing parameters. Such media have been con- 
sidered, for example, In [3 to 91. 

The question of boundary conditions and relationships on the dlscontlnul- 
ties has been Investigated In [lo to 143 by other methods for different media 
with microstructure. 

The analysis Is conducted within the scope of Newtonian mechanics (*). 

motion characteristics. 

Let us consider an arbitrarily Isolated volume 
t) referred to the Lagranglan coordinates s', 
Introduce three reference systems for the 

1. A moving Lagranglan system with basis 3i* and metric tensor (the 
aotual space) 

2. A fixed Lagranglan system with basis 3*" and metric tensor (the 
space of Initial states) 

Go = g,j“3f”3’0 

3. The fixed system of the observer 3i(d1, X2, 81 with respect to 
which the motion Is considered (we shall consider the 3( as Cartesian sys- 
tern) 

Sk =x" (El, Sa, 58, t), P = r0 + u(P, ta, C, t) 

Here u Is the displacement vector of the medium particles; V the 
velocity vector of the medium particles 

“1 This llmltatlon Is not too essential. Methods developed In the mentioned 
works [l and 23 permit easy extension of the obtained deductions to the case 
of the special and general theories of relativity. 
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U=rtJf3i=u”x ‘3; * 

We shall utilize variational equations of the form (1-j 

Ldzdt $8W + hw* = 0 (1.1) 

as the initial basis for construction of the model of our medium. 

Here L Is a Lagrange function dependent, according to the manner admit- 
ted by invariance considerations, on ul, the initial density pO , the 
entropy - S , 
with respect 

g,,', the tensor ~,~;)its time derivative g,~ , gradients 
to the initial space 

agfj 
V&O gtj = TtK - r”;tg,j - re;jg,, 

so that 
L =A(< 

k 
, pot gri vi, &?,j' g;t -W%j* 8) 

The variation 6W (6 for constant Lagrangian coordinates) is an integral 
over the surface x (5", t) bounding the volume Y(qk, t), of the linear 
combination aUo, Ggij and is determined by the assignment of L ; 6V is 
given and taken as t1 

ss 
pT&S dTdt 

b v 
The expression of the variational principle may be given another form if 

the integratlon is carried out over the fixed volume V. and its surface &, 
in the space of initial states, 
v(s' f C2, P, 

i.e. over the prototype of the volume 
t) at the initial instant. To do this let us Introduce the 

Jacobian of the transformation 

Then 
t1 

6 0 s L I/cd’ledt + 6W + 5 5 p Y’gTMdzEdt= 0 (1.2) 

t, vo to vr4 
In evaluating the variations in (1.2) It is necessary to take account of 

the following relationships: 

GVCgtj = V<Sgtj> bg,i = & t8g<j) ckdO& 

Here and henceforth it is considered that the variations i3u* are 

*I It would be possible to consider v~^Q~: 
the actual space instead of vrOff,l . 

the derivative with respect to 
However, by virtue of the existinginter 

relationships 14 andg, this would only result In a definition of the func- 
tion L . 
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continuous functions with continuous derlvatlves with respect to Fir and t 
to second order, inclusive. In the absence of higher derivatives among the 
governing parameters it is sufficient .to require Just the existence of first 
order derivatives. 

It is easy also to verify the validity of Formula 

Ai+gfj -_ --& 
k 

2Ai'gjk zw W’ - 

Performing the variation In (1.2), we obtain after the customary manipu- 
lation 

Here the lower limits to and CO denote integration over the four-dlmen- 
slonal space bounding the volume In the space of zhe T*, t coordinates 
considered as Cartesian coordinates; the nt, n 

c 
denote components of the 

unit vector normal to this surface. Because of he arbitrariness of the 
variation within and on the boundary of the region of integration, as well 
as of the region of Integration itself, Equation (1.3) yields 

The obtained equations should be considered as the equations of motion of 
the medium In Lagrangean form in projections on the axes of the observer's 
system 3+ 

The surface integral leads to the relationship 

Here 

(1.6) 

J  _aNi aL V'S -- Jfj r= aL irii 
0 av" ’ T&q-* 

Qkij- 
-avkog3j 

(1.7) 

Moreover, tte coefficient for 65' yields 

In this notation the equations of motion take the form 

(1.8) 



and the relationships 
tlons of the state of 
as the stress tensor. 

(1.5) to (1.9) may be considered as generalized equa- 
the medium, and In particular, pi4 may be considered 

In conclusion, let us note that if a variation of the time t Is carried 
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out in the fundamental relationship (l.l), it would then permit the energy 
equation to be obtained. in fact, let us consider the variation t*= t+ (It, 
where we take (it as an arbitrary constant. In such a variation, the term 

lV8t dr dt 

which vanishes for bt = 0 , should be added to bw+ and all the variations 
should be considered total, i.e. 

Then we obtain the energy equation 

& (L ‘f/g - J,V’ - Jijgi;) + -$ (h pi%*” - Qkifgfj)+ p ?& = 0 (1.10) 

as the additional equation. 

Multiplying (1.4) by z? and adding to the last, we obtain an equation 
for the entropy S by virtue of relationships (1.5) to (1.9) 

T i?=, 
at 

(iSi) 

Here X may be considered as the energy influx to the particle. 

2.~1~. Model of an elastic body . The 
finite strain tensor Eij = ‘I, (gij - gap)* is introduced as the characteristic 
of the medium. Let us assume that the Lagran&e 
as arguments. 

function has po,g~jo,sg, &,S. 
Then we have the following relationships: 

#i=-_ 1 aLI/; 

vgaglj ’ 
Yj = 0, @if = 0 

If it is assumed that I, = '/aPvi'i - plJ(sij,S), where U is the energy of 
unit mass, then 

J,==P )/iv, 

Model of an Ideal fluid This model Is obtained 
from the preceding one if It is considered that L*=L (Po,giia, I/g, $, s), I.e. 

that L does not. depend on all the components of the metric tensor but Only_ 
on its determinant B . (Ety virtue of the continuity equation J,f/g= p-lp, v/g,.) 
Taking into account the well-known formula from analysis 

we obtain for the stress tensor 

Here p is considered as the pressure. The formula shows that the contra- 
variant components of the stress tensor form a spherical tensor. 

Its mixed components equal p3,= - pbJR. If the expression L = *pu'v, - 
_ pU(p, s) is taken as the Lagrange function, then we obtain P = pabi7/bP 
for p . 

In this case the equations of motion become 



Model of a medium characterized by t h <’ 

density and the time derlvat1.e of the 

d e n a l t y . We take gij’v I/S, (I/g)‘, C”T S as the governing parame- 
ters for the Lagrange function. Taking account of the relationships 

avi_I/; ” a ( Vi?)’ 
agij 

T&J, ~ 
agij 

we obtain 

aL vi a aLv/g 
‘= aT/fi ---atacl/g). 

Here p la the pressure. If L = ‘jzpuiui - pu (p, p’, S), then 

Such a model of a medium may be utilized to describe an Ideal lncompress- 
lble fluid with bubbles changing their volume [q]. 

It should be noted that the model of a medium has been constructed herein 
under the assumption of no additional energy Influx to the particle dq** 
connected with the Internal degrees of freedom 133. Our expresslon contains 
such an Influx, equal to 

dq **= $d(p2p’ F) 

By suitable selection of 
medium considered In [q]. 

bP It Is possible to obtain the model of a 
Finally, the obtained formulas permit the analysis 

of examples of a medium [5 and 63 being characterized by space derivatives 
with respect to the density vtop . 

3. Dlr0ontlrA~t1.r inr 0ontlnulJnl. In a continuum let there be a surface 
on which Its characteristics undergo discontinuity. To find the conditions 
which the values of these characteristics should satisfy on the surface of 
discontinuity, let us use the following variational principle: 

i: rr 
8 L(Po* kY{j’s gije vk'gijv gij’, Vkv S) dT dt = 0 

For slmpllclty it Is here considered that 

BW=O, sw* = 0 for 6u p = 0, dg ij Ix = O 

The Lagrange function may Itself have a different form on both sides of 
the surface of discontinuity. (Let us note that In such cases &F may not 
be zero because of the additional Internal energy sources on the surface of 
discontinuity). Hence, the subsequent results also refer to the case when 
the surface of discontinuity 1s the Interface between two media, and in the 
case of a stationary discontinuity the conditions on it may be considered as 
boundary conditions. 

The equation of the surface of discontinuity Is not known beforehand, 
hence not only the medium characteristics, but also the surface of dlsconti- 
nulty SO, are subject to variation. Let the discontinuity occur In the sur- 
face So4 whose equation Is F(T', ca, c3, t) = 0 , dividing the four-dlmen- 
slonal volume Vor Into two parts Vo+ and V,_. As the comparison surface, 
the variational 
the surface (So4 B 

osltlon of the surface of discontinuity (Flg.l), let us take 
defined with the aid of the virtual displacements along 

the normal al,,, 
61N=6Eknko + &nt 

nkO = Fek / fQ=-!- PEP + FE.= -I- Ft=, nt = F, f v FEea + FE;d + FE,= + Fta 

and let u8 consider the total variation of the functional (3.1) over the 
domain V. , say, by taking account of the domain Itself In the variation. 
This varla&n la the principal linear part of the change In the funct xal 
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during Integration over the volume Vo++ AV, and Vo, 

s 
(L J’-&dzc dt- ’ Lv/gdz<dt= 

s 5 
6L l/gdzE dt + L &fdz< dt -j-R 

vo++*vo voi vo+ 
s 

AVO 
Here A are higher order quantities. It is easy to note that to the 

accuracy of higher order quantities, the Integral over dVO may be written 
as an Integral over the surface so, 

s 
L v/gdz< dt = ’ L ~&,o do,, = 

Av. 
s 

ha 
s 

L f/g(6~knk0 + 6&Q) doe 

SO4 
The expression for the total variation of the functional over the volume 

VO+ will be 
8 

s 
L~/gdyit= 

5 
&L v/g d<, dt + 

s 
L v/g(64”nk” + 6tnt) do,, 

v@t vo+ so4 
Taking account of Formulas (1.5) to (1.9) from Section 1, we have 

6 S 
vo+ 

+ (J%t + Qkfiqo) (bgij} dco dt + (L I/&a& + L rg6fk@) da, dt (3.2) 

Here the brace { ] denotes that the variations are taken for bc’- bt-0. 
The volume Integral In the right-hand side vanishes because of the equations 
of motion of the medium. 

For the subsequent transformations It Is necessary to take Into account 
that all the variations {bg,,] on the surface are not Independent. 

Only that part of them will be independent which Is expressed In terms of 
the variations of the derivatives of the dlsplace- 
ments with respect to the normal to the surface. 
In order to have only Independent variations in 
(3.2), let us use the evident relationships [ 153 

Here nk= nk'/ I/nloa + nzo2 + nBo2 are the components of the unit vector 
normal to the surface SO3 

leak - 
a 

nank) 7 = D,, 
af 

n ,$a_?- 
a at k- an 

are derivatives along the surface and with respect to the normal to the su;'- 
face. 

The following Formula Cl63 Is valid In the notation accepted: 

s (ni Dana - Di) @” {eu,) dq, + @“‘n*T do0 
(3.3) 

Sd 
Here So3 Is a closed, smooth surface T)' see this footnote on the next 

page). Taking the expression 2(/Jn, + Q IJnko) as WJ, let us rewrite the 
variation over the volume V,, as follows: 
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An analogous expression Ls obtained for the variations over the volume V,. 

The expression for the sum of these variations, which equals zero, may be 
used to determine relatlonshlps on different kinds of dlscontlnultles. bet 
US consider a discontinuity on which the displacements and their derivatives 
with respect to the normal remain continuous, so that 

6u+” = &Lo, $ (6Uj^)+ = & (6”j^)_ 

Then by putting a<k- bt - 0 , we obtain the first group of relationships 
by virtue of the arbitrariness of the variations au+" and a(&,^)/&+ , 

Jont -g ( I/gpjknj” - QijkU~~‘)] = 0, [(JiL,t + Qkijnk") ni] = 0 

where, as usual, the square brackets [ ] denote jumps in the medium character- 
istics. Furthermore, assuming agk#C, &+O and taking account of the 
total variation formula 

(6u0)=6u0 -v'd2$65'. 

we will obtain still another relationship 

The relationships obtained for the agk are satisfied identically because 
of the equations for bt , as well as the known conditions of kinematic com- 
patlbillty [17]. 

If the mass coservatlon equation Is added to the obtained relationships, 
the complete system of conditions on the discontinuity of considered type 
will then be 

[P IGI =o (3.5) 

(3.6) 

Pormuka (3.6) may be considered as the momentum equation; (3.8) as the 
energy equation; (3.7) as additional "momentll relationships because of the 
Rresence $f higher derivatives. Here - nt/lnol yields the propagation 
velocity of the surface of discontinuity In the E,k system. RelEFor&lps 
of another kind are obtained If the normal derivatives a6u;/an 
sides of the surface of discontinuity are considered Independent. 

Conditions (3.7) are then replaced by the following: 
. . . . 

(.f3nt + Qk”QO) n( I+ = 0. ( f’nt + Q k?Zk”) $ I_ = 0 

and (3.8) will have the simpler form 

*) The considered surface Is not closed, but the Integration is easily ex- 
tended to a closed surface conslsltlng of the surzace of dlscontinulty and 
the surface of the body since the variations bu, are zero on the latter. 
Suchasurface nmyevldentlyalways be chosen smooth, whMis essential Since 
otherwise additional contour Integrals will appear In the presented formula. 
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The peculiarity of the obtained conditions is that they reflect the geo- 
metric propertles of the surface of dlseontinulty (in terms of the R,J,). 

Let us note, in conclusion. that these conditions simplify greatly in the 
case of small deformations, and go over Into the customary conditions on a 
shock 1181 in the absence of higher derivatives. 

The author Is grateful to L-1. Sedov for interest and valuable comments. 
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