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The question of the application of a variational principle as the fundamental
basis for the construction of models of media within the scope of the special
or general theories of relativity was considered in detail by Sedov [1 and 2].
In the foregoing work variational principles are applied to obtain conditlons
on the surfaces of dilscontinuity of the characteristics of the medium. Equa-
tions are thus obtained on discontinuities in media having internal degrees
of freedom, as is expressed in the presence of the strain rate tensors and
strain gradients among thelr governing parameters. Such media have been con-
sidered, for example, in [3 to 9].

The question of boundary conditions and relationships on the discontinui-
ties has been investigated in [10 to 14] by other methods for different medla
with microstructure.

The analysis 1s conducted within the scope of Newtonlan mechanics (*).

1. Variational Prinoiplo. Let us consider an arbitrarily isolated volume
of a continuum V(e 3 "£2, t) referred to the Lagrangian coordinates g?,
e?, g2 . Following f35, let us introduce three reference systems for the
motion characteristics.

1. A moving Lagranglan system with basis 3;" and metric tensor (the
aotual space) R i

2. A fixed Lagrangian system with basis 3;° and metric tensor (the
space of initial states) b io
6> =g,;°3"3

3. The fixed system of the observer i (21, 22, 2*), with respect to
which the motlon is considered (we shall consider the 9; as Cartesian sys-

tem) X X
r =z (Els EB’ Es: t)y v=Ty+ “(Ely £?, €8, t)
Here W 1is the displacement vector of the medium particles; v the
velocity vector of the medium particles

#) This limitation is not too essentlal. Methods developed in the mentioned
works [1 and 2] permit easy extension of the obtained deductions to the case
of the special and general theories of relativity.
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We shall utilize variational equations of the form [1]
t

8§ § zavar - sw +owe =0 (1.1)
6LV '
as the initial basis for construction of the model of our medium.

Here L 1is a Lagrange function dependent, according to the manner admit-
ted by invariance fcnsiderations, on v', the initial density ps , the
entropy - S , ¢,;,, the tensor ¢,,, its time derivative ¢,, , gradients
with respect to the initial space t*)

og
i " 0w
Vi85 gpr — Ui — ki€ i
so that . )
. 2 * e
L=L(%", po 815 7 &uij &i5r Vi B S)

The variation &W {6 for constant Lagrangian coordinates) is an integral
over the surface I (€%, ¢) bounding the volume V(g*, ¢), of the linear

combination Gu“,ﬁgﬁ and 1s determined by the assignment of L ; &W* 1s
given and taken as 4

S S pT8S dvdl

Ly

The expression of the variational principle may be given another form if
the integration is carried out over the fixed volume Vo and its surface %,
in the space of initlal states, 1.e. over the prototype of the volume
v(el, g2, £, t) at the initial instant. To do this let us introduce the
Jacobian of the transformation

oz .
- Ve detfg i;: i

A==deti—F
dv = Vg dEMEMES, dvo= V godE!, dE?, dE3, dv, = dEldEMED

aEs

Then
t

atg S L Vgdvgdt+8W + S S o Vg T8Sdrydt=0 (1.2)
t, V.

s 70 & Yo
In evaluating the variations in (1.2) it is necessary to take account of
the following relationships:

i a i ) o
S —_—.*5-[—(614) 8pe =0, 6315 == 0

g¥=const,
g T g O
bgy;=15(3,%9;") =3, 83;" + 9; §9," =93, 5'527’”*'3:5 gt
a A ~ a Am Ak ~ -~ ~ ~
=9;" agf‘(ﬁuk 3°% +3, -62“—(5“1: ") =V 8" + V",
k
au.n AW A aé’
VjAuf"=h5‘§7—P e o Buy" =gy o5 8u®

)
8V 813 ="y"88 88 = 3¢ (8i;) sk—oconst

Here and henceforth 1t is consldered that the variations ©&y! are

*) It would be possible to consider v,"¢,; the derivative with respect to
the actual space instead of vk°a,,. However, by virtue of the existing inter-

relationships (4 and 5], this would only result in a definition of the func-
tion L .
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continuous functions with continuous derivatives with respect to F¢* and ¢
to second order, inclusive. In the absence of higher derivatives among the

governing parameters it is sufficient to require Just the existence of first
order derivatives.
It 1s easy also to verify the validity of Formula
i 8 ;0" o 2y
AV8g, = —r (2.4” : ——5u°’>— 07" (—r A”) du®
giJ ag] gik 8z Vg gﬂt az” vz Vg
Performing the variation in (1.2), we obtain after the customary manipu-

lation
{234;1/5 Vo 1 L Vg

3
ot . i _
Ve 9%;; Ve % Vi 0V8;

,_tgg {-a—‘”; VE | View oo vy
v

ot gy

o [
- iy _

2 80L Vg ° e (oL Ve B “

T Vg 0t gy ]}6” dvydt - ﬂ\ Go —p VT | 8Sdvgdt +
LVe

£,
a3 6L ' aL V’;{ a
S { V;__g ndu® - Ogy; #d8;; + msgﬁnk" + (1.3)

X _ - —
28" (oL Vg . 1 0LVg d8LVg o

S (e TR T TR ) p o L auCdsedt + 5 =0
+2g1k 8:::“‘( Vgﬂvk Vgo avk g‘ij 8t 3gﬁ i +

Here the lower limits ¢, and I, denote integration over the four-~dimen-
sional space bounding the volume in the space of the ¥, ¢t coordinates
considered as Carteslan coordinates; the n., n,° denote components of the
unit vector normal to this surface. Because of %he arbitrariness of the

variation within and on the boundary of the region of integration, as well
as of the reglon of integration itself, Equation (1.3) ylelds

8 OL Vg - BEF _ . 2 oL Vg Zo < o g
T L/g + Vggik—g’—@w (~——_ 6?’8’ ——21‘??7’1; ——1—::ng_—
v ax Ve 9% Ye V2.9V 845
_ 2 203LVg ) =0 (1.4)
Vg 6t 0ng
The obtained equations should be considered as the eguations of motlon of
the medium in Lagrangean form in projections on the axes of the observer's
system 3.
The surface integral leads to the relationshilp
6W=SSH@ﬂ&;@meme~Jﬁwm~ﬂ®mﬁm& (1.5)

[ 79378
Here
i 2 Ve oy V8 G A oLVg, 2 2VeE (4
Ve g Ve V2dVse; Vg % %
; Ve gy _oLVe  ogwi 9LV a.n
©T v oz IV 8ij
Moreover, tte coefficlent for 65 yields
LYe __ o Var (1.8)
=P Ve
In this notation the equations of motion take the form
- 3E¥

a7, .
o — Ve Vit Pk=0 (1.9)
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and the relationships (1.5) to (1.9) may be considered as generalized equa-
tions of the state of the medium, and in particular, pt!! may be considered
as the stress tensor.

In conclusion, let us note that if a variation of the time ¢ 1s carrled
out in the fundamental relationship (1.1}, it would then permit the energy
equation to be obtained. In fact, let us consider the variation t*a= t+ 8¢,
where we take 6t as an arbitrary constant. In such a varilation, the term

4

S g Nétdvdt

which vanishes for 6¢ = O , should be added to &W* and all the variations
should be considered total, 1.e.
8q = 8qy_ponat + 902
Then We obtain the energy equation

3 , R N . -
B LVE—I0° = T8) 55 (75 20" — Q¥ )+ VN =0 (140

as the additional equation.

Multiplying (1.%) by »* and adding to the last, we obtain an equation
for the entropy S by virtue of relationships (1.5) to (1.9)
T _N (1.11)
gt

Here N may be considered as the energy influx to the particle,

2. Examples. Model of an elastic body . The
finite strain tensor ;= Y;(gyj — &) 18 introduced as the characteristic
of the medium. Let us assume that the Lagrange function has p,, g%, 2, o, S.
as arguments. Then we have the following relatlionships:

. AL Ve . ;
Pi]__ 1 Vg R JH =0, QHJ:O

T Vi %

If it is assumed that L = 1,00%; — pU (845, §), where U 1s the energy of
unit mass, then

;s U -
P":P_”as,-j ) Jmmp Vg v,
Model of an ideal fluid . This model is obtained

from the preceding one if it is considered that [ — 1 (P gi’.o, }/E, yk, ), 1.e.
that I does not depend on all the components of the metric tensor but only

on 1its determinant ¢ . (By virtue of the continuity equation ]fg_z P71ps ]/go.)
Taking into account the well-known formula from analysis

%-gif—f-=é« Vg
we obtaln for the stress tensor
—— e Y & i ij . Mg_
TTeve P TR T v

Here p is considered as the pressure. The formula shows that the contra-
variant components of the stress tensor form a spherical tensor.

Its mixed components equal pd, = — p6' . If the expression L = #pviv, —

— oU(p, S) 1s taken as the Lagrange function, then we obtain p = p?8U/6p
for p .

In this case the equations of motion become
%y op OEF

P 5 +6_E—K5;; =0
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Model of a mediIlum characterized by ¢t he
density and the time derivati- e of t he

densilty . We take gﬁoy W/g,(lng, v& S as the governing parame-
ters for the Lagrange function. Taking account of the relationships

9g;; 2 ’ dgi; |85 =const 9 5

we obtaln

psj__[éfi_lfé_iéL_V__gJ b g, . 0LVE 9 0LVE
0Ve oV 8Veg 9oV

Here p 18 the pressure. I1If L = Y,pvlo; — pU (p, p,S), then

U 7] U
:2______ 2—.—_
P=0"5 az( 6p>

Such a model of a medium may be utilized to describe an ideal incompress-
ible fluld with bubbles changing their volume [9].

It should be noted that the model of a medium has been constructed herein
under the assumption of no additional energy influx to the particle dg¥**
connected with the internal degrees of freedom [3]. Our expression contains
such an influx, equal to

**_1 2aU
dg ——d<pp ———)
p dp

By sultable selection of &W* it is possible to obtain the model of a
medium considered in [9]. Finally, the obtained formulas permit the analysis
of examples of a medium [5 and 6] belng characterized by space derivatives
with respect to the density v,%p .

e

3. Discontinuities in a continuum. In a continuum let there be a surface
on which its characteristics undergo discontinuity. To find the conditions
which the values of these characteristics should satisfy on the surface of
discontinuity, let us use the following variational principle:

t

6> \ Lo g, £33, Ve g3, 0%, S)dvdt =0 (3.4)
5V
For simplicity it 1s here consldered that

W =0, SW* =0 for 6u|2=0, 8gijlg =0

The Lagrange function may 1itself have a different form on both sides of
the surface of discontinuity. (Let us note that in such cases &W* may not
be zero because of the additional internal energy sources on the surface of
discontinuity). Hence, the subsequent results also refer to the case when
the surface of discontinuity 1s the interface between two media, and in the
case of a stationary discontinulty the conditions on it may be consldered as
boundary conditions.

The equation of the surface of discontinuity is not known beforehand,
hence not only the medium characteristics, but also the surface of dilsconti-
nuity S,. are subject to variation. Let the discontinuity occur in the sur-
face So4 whose equation is F(g', €2, £, t) = 0 , dividing the four-dimen-
sional volume Vo, into two parts V;, and V,.. As the comparison surface,
the variational position of the surface of discontinuilty (Fig.l), let us take
the surface (Sb¢§ defined with the aild of the virtual displacements along
the normal Mn. "

O8ly0 = 88" ny° 4 btny

ne =Foy |V P T Fed T Fed 77, ng=F] VYV e+ P+ F2 L F
and let us consider the total variation of the functional (3.1} over the

domain V,,, say, by taking account of the domain itself in the variation.
This variation is the principal linear part of the change 1n the funct onal
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during integration over the volume Vo,+ AV, and Vo,

(L Vg)dv, dt — S LVgdr di= S 8L Vgdr, dt + S LV{§dvgdt+R
Vo +avy Yo+ Yo+ AVp

Here #A are higher order quantities. It is easy to note that to the
accuracy of higher order quantities, the integral over AV, may be written
as an 1ntegral over the surface Sp,

S LVEdTEdtZSLVA_’(SlnodGo‘:- SLVé(aa"nk°+ 8tn;) ds,
AV, Sos ="
The expression for the total variation of the functional over the volume

Vo, will be ~ B ~
3 S LVgdv di= S 8L Vg dv, dt + SLVg(G&knk°+ §tny) do

0+ Vo+ Soq
Taking account of Formulas (1.5) to (1.9) from Section 1, we have

- ¢ (9 _ gk ,
8 S LVgdv, dt =— (——m-—- Ve—5 v;* P )Gu“dr dt 4-
. 13 V§+ ot oz 3y Pk g

o+

ko
+ §§, (‘Io.\nt - VZ’—gf’; pxng® ) {6u} dop dt
t x

+ ig (T + QMiny?) (Sgug) do ds + ig (L Vandt+ L VEbthn)doo dt  (3.2)
t S0
Here the brace { } denotes that the varlations are taken for 8g*=6t=0,

The volume integral in the right-hand side vanishes because of the equations
of motion of the medium.

For the subsequent transformations it 1s necessary to take into account
that all the variatlions {6¢,,} on the surface are not independent.

Only that part of them will be independent which i1s expressed in terms of
5, (5 the variations of the derivatives of the displace-
9 ments with respect to the normal to the surface.

In order to have only independent varlations in

(3.2), let us use the evident relationships [15]

{8gi} = Vi* (6™ + ;" (8”7}
R . d {(Bu;"™})
Vi {8u;t )y = ol
(] F] X P r 0
Fig. 1 6—512(5@ —"an)a?Jr"a" P

Here Rx=n;"/ V' n®® + n3 | n5°®  are the components of the unit vector

normal to the surface Sy,
17} a
k

/]
k__ k.Y v s
(6" — nyn )ag"ﬂD“' nant k=7
are derivatives along the surface and with respect to the normal to the sur-
face.
The following Formula [16] is valid in the notation accepted:

. 0 (Bu. " 9 (du.
ot 20 l:J} oy = S (n;Dgn™ — D) ® (S} dsy +§ o7y ;5“,} 4% (3.3)
aa Sol 03 "

—T73; (8u; "

Here Sp, 1s a closed, smooth surface (*)(see this footnote on the next
page). Taklng the expression 2 (J*J,,t + @ Wnk°) as 9!, let us rewrite the
variation over the volume V,, as follows:
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_ i * k _ . . ]

8 S L Vg dr. dl-= \ S {Ju)ll’K — ?é‘ ( Vg/)Jk'/jo — Qﬁk(‘D”)J {6u®} doy dt —+
Vv ) P S - ax*

o+ 03

. 9 * - -

4.-5 S ®n, o 04"} doy dH-S 3 (L Vgndt+4 L V g8¥ny°) dso dt (3.4)

Sha t Sea
Qijk == (IlriDaILa — [),‘) ng —T Ai]'k
An analogous expression is obtained for the varlations over the volume V, .

The expression for the sum of these variations, which equals zero, may be
used to determine relationships on different kinds of discontinulties. Let
us consider a discontinuity on which the displacements and their derivatives
with respect to the normal remain continuous, so that

w [ 0 ~ 9 ~
Ou,®=08u_", B (Guj )i = Bn (Guj -

Then by putting 8= 6t = O , we obtain the first group of relationships
by virtue of the arbitrariness of the variations bu+m and a(buj“)/an+

4z
where, as usual, the square brackets [ ] denote jumps in the medium character-

istlcs. FPFurthermore, assuming bgkqg(h 8t =~ 0 and taking account of the
total variation formula u®
_ Sah

a
{6u®) = Bu® — v°6t — e
we will obtain still another relationship

- gk . g i Oy
[(L Vg - vaw) ny <+ ‘a“i; (Vgpjkn,-" _— Qijk(l)”) »® — (D”nj Yi ] =0

ok . i . .
[-’m": - (Vep'sn — Qi@ 7)} =0, (Jn 4 Q" m®)ns] =0

on

The relationships obtained for the 8£* are satlsfied ldentilcally because
of the equations for 6t , as well as the known conditions of kinematic com-
patibility [17].

If the mass coservation equation is added to the obtained relationships,
the complete system of conditions on the discontinulty of considered type
will then be

e Vel=0 (3.5)

AR ij
Tt =5 (Ver's — Qup@”) | =0 (3.6)
[(7¥n 4 Q¥ny Ing] = 0 (3.7)

- ok - i; ;o vt
LV~ T n +5—i’: (V ipiens® — Q4@ v° — <1>”n,-—,-,—:;] —0  (38)

Formula (3.6) may be considered as the momentum equation; (3.8) as the
energy equatlon; (3.7) as additional "moment" relationships because of the
resence of higher derivatives. Here - n./|n°| ylelds the propagation
velocity" of the surface of discontinuity in the £* system. Relatlonships
of another kind are obtained if the normal derivatives 23su,/dn on both
sides of the surface of discontinulty are considered independent.

Conditions (3.7) are then replaced by the following:
ij ij ij Kkii
(g + Q¥ gy g, =0, (7"ny 4 Q¥ nx’) i |- =0
and (3.8) will have the simpler form

*) The considered surface 1s not closed, but the integration is easily ex-
tended to a closed surface consisiting of the surface of discontlinulty and
the surface of the body since the varilations 6u,” are zeroc on the latter.
Such a surface may evidently always be chosen smooth, which is essential since
otherwise additional contour integrals will appear in the presented formula.
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_ pEx .
[(L Ve—Juo®)n, - paee (Var'yng — Qip®") v“’] =0

The peculiarity of the obtained conditions is that they reflect the geo-

metrlc properties of the surface of discontinuity (in terms of the Q,,k).

Let us note, in conclusion. that these conditions simplify greatly in the

case of small deformations, and go over into the customary conditions on a
shock [18] in the absence of higher derivatives.

10.
11.
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The author is grateful to L.I., Sedov for interest and valuable comments.
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